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1.o Derivations

Consider the linear equation

:v+:U av =O
at ax

and its centered-difference analog

v2 t +~U*~ 2 ~=O~ (1)
0 0 ~- : v-t +U IV2x = ° 0 (1

-where

v2t (Vj,n+l - Vj nl) /2At

V2x --(Vj+l', n - Vj-1, n) /ZA

j and n are serial numbers of grid points in x and t, respectively;
At is the time step; A is distance between adjacent grid points. The
superposed bar -) in (1) represents an as yet unspecified discrete
linear operation, such as smoothing.

I will regard the solutions of (1) as su-m.s'of components

v v =.A v cos (Pj - vn) ( . (2)

Substitution from (2) into (1) yields the frequency equation

UAt
-sin v = - w sin (3)

The function, w, of 'in (3) is--the response of the bar-operator in (1).

--For.bounded solutions,

.UAt .w sin p<l
A

'.-for -otherwise

-fsin v = cosh (u-- )

<--and-:the- components (2) would.contain- exponentials in no
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Now, when the bar-operator is nul, w.= 1, and a sufficient condition
for -stability is the familiar

0 0 f ~~~UAt <1 : 
A

-because the maximum absolute value of sin , is 1. If generally, w #1, then
UAt/A must be adjusted to the maximum absolute value of w sin P.

I will-define the response of the difference-estimate in (1) as

w = (, v )'2x (4) .
8V

Call w't in the case of the nul bar-operator (w = 1), w°o

By substitution from (2) into (4) we find

! ,v)2x _ sinW d____ -- s, 6 (5)
aX

A-useful characteristic of the function w° is that it is very nearly
a linear function of (cos p) in the range -o < <p rT. Compared to the
function

w= (2 + cos ~)

-they both are .unity at p =0, and have--derivatives -with respect to
(cos p) of. 1/3there. At ,=j 1!r, w°,= 2/rlT-andw '= 2/3, -nearly

-the -same.

F-ourth-order-truncation error- contr-ol -amounts -to lusing::the -bar-
-operator whose response is

w = (4 -cos ,). (6)

The naximumn of (w sin p), -with w defined as in (6), is 1.37222.and
-.occurs at 5 = .-57215 w (cos p = - 0.22474). -With fourth-order trunca-
: tion error control, therefore, -the timne-step -must be reduced by
27. 1% (1 - 1. 37222-1), increasing the number -of -time-steps in a

4forecast by"37.2%.
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There is an additional penalty,in the number of calculations needed to
apply the bar-operator. This is minimal, however, since the bar-
operator, whose response is (6), has the simple weighting pattern:

1 4 1

6 3 6

On the other hand, consider a reduction in grid-size by a factor, a, .
retaining second-order differencing (w = 1). For stability, the time-
ptep must also be reduced by the factor, a. In a numerical weather
-model with two space dimensions the number of calculations
will therefore increase by the factor a - 3.

Now, for a given wave-length, let's ask what a must be to achieve
the same correction that fourth-order differences give. Since j', the
serial number in the new more highly resolved grid, is related to j by

aj =j

we may write for the components in the new grid

v , u = ,A- , cos'(Lj -

and, for the same wave-length,

The response for the first centered-difference is

Vo, sin, ~_sin p6
'wok = sin ;: :p. - : t :

The problem then becomes that of solving

sin pA= -a(4 - cos p) sin p

for a, given p. This was done on one of the new small hand-held
programmable calculators.

2, Results

The table below summarizes the results for various p's. In the table, N
i s the wave-length in units of the larger grid-increment:

: 0 0 \ N = Z /p2 /
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1" ~~~~~~~~3
N W, iw 'Ci.a

15 .971 .9990 .185 157

12 .955 .9976 .231 81. 7

10 .936 .9950 .275 48.3
-A8 .900 .988 .339 25.6

.~~ 96 .827 .965 441 11. 7
5. 198 .774 .940 .5 8)

4 .637 .849 .62 1 4.18
3 .414 .620 .769 2.20 

2.4 .191 .310 .891 1.41
E2 0 0 1 i 1

The first entry, for 15A -long waves, is not very interesting. Although 157
times as much calculation would be required, with higher resolution, to reach
the truncation error level of fourth-order differences, the uncorrected lower
resolution has an error of less than 3%. Furthermore, it would be unreason-

able to require this to be reduced to 0. 1%4.

The entry for the 8/k-long wave is more interesting. With the grid-increments
of 200 to 400 km in use in NMC operational models, these components are

1600-3200 km long -- below the storm scale, but important contributors to

shapes of storms. Here, fourth-order differences reduce error from 10%

to 1. 2%, which if achieved by increased resolution alone, would increase the

number of calculations over 25 times.

Tile entry for 6A-ilong waves, which have a large (17. 3%) error without
correction, shows that their corrected error (3. 5%) is less than the un-

corrected error (4. 5%) for 12A-long waves. To achieve the same result

with higher resolution alone would increase the calculations 11. 7 times.

3. Conclusions

The conclusion is that, although fourth-order differencing techniques have
difficulties not discussed here, they are extremely interesting vis-a-vis

higher resolution from the standpoint of economy. They lead to such small
errors down to wave-lengths 6A long or so, that they are also interesting

compared with orthogonal-function techniques.

Even if semi-implicit techniques were combined with higher resolution, the
fourth-order techniques would sustain their relative economy. Semi-implicit
methods yield only a factor of 4 in reduction of numbers of calculations,
without affecting the truncation error discussedhere. Our results as shown
in the table in the previous section indicate considerably more benefit than
that for waves longer than 6A. There is, of course, no reason to suppose
that'semi-implicit methods and fourth-order differences are mutually
exclusive.
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